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Abstract
The subcellular organization of proteins and RNA molecules is
crucial for their proper functions. Over the past decade, both
ligase-mediated and peroxidase-mediated proximity labeling
(PL) techniques have been developed to map biomolecules at
near-nanometer spatial resolution and subminute temporal
resolution. These methods are shedding light on the spatial
arrangement of proteome and transcriptome in their native
context. Here, we review the recent evolution and applications
of PL techniques, compare and contrast the two classes of
methods, and highlight emerging trends and future
opportunities.
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Introduction
Eukaryotic cells are elaborately divided into subcellular
compartments that feature distinct biochemical char-
acteristics. The spatial organization of proteins and
RNAs in these subcellular regions is intimately linked to
their biological functions, including signal transduction
[1,2], localized protein synthesis [3,4], regulation of
chromatin structure [5], etc. While most famously
observed at membrane-bound organelles (either in the

interior [6] or on the surface [7]), the subcellular
targeting of proteins and RNAs have also been discov-
ered in membrane-less compartments, such as highly
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dynamic liquid-like condensates that form via liquide
liquid phase separation (LLPS) [8]. For example, stal-
led translation-initiation causes mRNAs and mRNA-
binding proteins (RBPs) to assemble into stress gran-
ules (SGs), in a process of protecting cells from oxida-
tive damages or other cellular stress [9].

The subcellular proteome and transcriptome have been

traditionally investigated by co-immunoprecipitation
(co-IP) and biochemical fractionation. However, both
methods require prior cell lysis, which is prone to losing
low-affinity and transient proteineprotein interactions.
In addition, co-IP is limited by the availability of high-
quality antibodies against the bait, while biochemical
fractionation often suffers from incomplete purification.
For example, the transcriptomic profiling of isolated
mitochondria has identified abundant contaminations
from the cytoplasm [10]. Furthermore, not all subcel-
lular structures are amenable to fractionation [11]. Over

the past decade, enzyme-mediated proximity labeling
(PL) techniques have emerged as powerful tools for
locating proteins and RNAs in live cells. In these
methods, an engineered enzyme is expressed at a spe-
cific subcellular locale, where it catalyzes the in situ
synthesis of a highly reactive small-molecule interme-
diate, which subsequently diffuses away and reacts with
proteins and/or RNAs to form a covalent label
(Figure 1a). Due to its limited lifetime, the local density,
and hence the labeling efficiency of the intermediate
drops off as a function of the distance from the enzyme.

Thus, all else being equal, proteins/RNAs proximal to
the enzyme are more likely to be labeled than distal
ones. Compared with biochemical fractionation, PL
could access information from subcellular compartments
that are impossible to purify or highly dynamic (e.g.
signaling complexes, LLPS, etc.). PL also complements
co-IP studies because it is capable of mapping distant
proteineprotein interactions, with an ‘action contour
map’ that spans over several ‘interaction layers’
(Figure 1a).

In this review, we highlight several emerging trends of
PL technology development and new avenues of its
applications. As discussed below, enzyme-mediated PL
is now moving rapidly from membrane-enclosed com-
partments to open subcellular space, from protein-
centered profiling to RNA/DNA-centered analysis, and
from cell culture to animal. As this is not intended as a
www.sciencedirect.com
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Figure 1

(a)

(b)

Affinity
purification

Mass spec
analysis

m/z

in
te
ns
ity

Proximity labeling
High 

throughput 
sequencing

ATCACAGTGGGACTCCT
CGAAGGACCAGCAGAAA
GGACACCCAGCGGGCTG
ATGAAACATCAAACAAT
GAAGAGCAATCAGTCAG
……

HO
O

S H
NH

H
OHN

N
H

O

N
H

O

S H
NH

H
OHN

ChromID

Chromatin 
labeling with 

dCas9-APEX2

Photo-
crosslinking

K14D/E112K/W41FAPX

2013 2015 2016 20172012 2018 2019 20202014

APEX

BioID

BirA* = R118GBirA BioID2

A smaller biotin ligase 
from A. aeolicus

Split-
BioID

Spot-ID

DTB-
phenol
probe

Chemical 
crosslinking

Direct RNA 
labeling

APEX2

Proximity
-CLIP

APEX-seqAPEX-
RIP

BASU from
B. subtilis

Evolved faster 
and smaller BirA*

TurboID & 
miniTurbo

O

S H
NH

H
OHN

HO

H2N

N N

N
N

HO OH

O
OH

O

O
P

O

S H
NH

H
OHN

O
NH2

N
H

HN O
H

NH
HS

O
ATP

Enhanced 
ascorbate 
peroxidase

GLoPro
&

C-BERST
Split 

APEX2

RaPID

H2O2

Evolved faster
enzyme 

A134PAPEX

OH

OH

HO
O

S H
NH

H
OHN

N
H

Phenoxyl radical

Bio-AMP

BASU fused 
with chromatin 

readers

Contact-ID
&

Split-TurboID

Current Opinion in Chemical Biology

The mechanism and evolution of enzyme-mediated proximity labeling. (a) Schematics of proximity labeling (PL) workflow. An enzyme (a biotin ligase
or a peroxidase) is targeted to a specific subcellular location (e.g. mitochondrial matrix) via fusion with protein markers or signal peptides. Proximity is
achieved through the in situ enzymatic synthesis of biotin-conjugated reactive intermediates, which subsequently diffuse away and react with nearby
proteins/RNAs. The nanometer-scale action radius of the intermediates (shown as a red contour map) covers both proteins/RNAs that tightly associate
with the bait and those that loosely interact in the same compartment, enabling PL to reach over multiple layers of protein–protein/RNA interactions. After
cell lysis, biotinylated proteins are collected by affinity purification and characterized by mass spectrometry. Biotinylated RNAs are analyzed by high-
throughput sequencing. (b) The mechanism and technology development timeline of PL. In the presence of H2O2, APEX (green, PDB 1V0H) converts
biotin phenol to phenoxyl free radical, which reacts with the adjacent tyrosine residues. In the presence of ATP, BioID (cyan, PDB 2EWN) activates biotin
into bio-AMP, which reacts with lysine residues of neighboring proteins. The timeline describes a brief history of major APEX- and BirA-mediated PL
techniques. Methods highlighted in green, blue, and pink refer to protein-centered, RNA-centered, and DNA-centered profiling, respectively.
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comprehensive chronology of all PL applications, inter-
ested readers may find further information in several
excellent reviews [12e15].
The evolution of promiscuous enzymatic
labeling
The high spatial resolution of PL technique is achieved
via both genetic targeting of the enzyme and the small
www.sciencedirect.com
action radius of the reactive intermediate. Depending
on the nature of enzymes and chemical reactions, PL is
broadly categorized as biotin ligase mediated or peroxi-
dase mediated.

BioID (also known as BirA* [16]) is a 35 kDa Escherichia
coli biotin ligase mutant R118GBirA. In the presence of
ATP, BioID converts biotin into biotinyl-50-AMP (bio-
AMP), which is subsequently released into the cellular
Current Opinion in Chemical Biology 2021, 60:30–38
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32 Omics
environment and reacts with the lysine side chain of
nearby proteins [17](Figure 1b). Initially developed in
2012, BioID has been broadly applied to cultured
mammalian cells [13], plant cells [18], mouse [19],
yeast [20], etc., to profile proteomes in numerous sub-
cellular structures, including the nuclear lamina [17],
the nuclear pore complex [21], and centriolar satellites
[22](Figure 2). In 2016, an improved smaller biotin

ligase (BioID2) was developed from an Aquifex aeolicus
enzyme to enable more-selective targeting of fusion
proteins, leading to a better coverage of the nuclear pore
complex components [23].

BioID/BioID2 requires several-hour labeling due to slow
enzymatic kinetics [24]. Two strategies have been used
to address this limitation. In the first one, Ting and
coworkers applied yeast display-based directed evolu-
tion to enhance the catalytic efficiency of BioID. The
resulting ligase mutant, termed TurboID, has up to 23-
Figure 2
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fold higher activity and reduces the labeling time
window down to 10 min. Meanwhile, a truncation
variant with reduced protein size and comparable la-
beling efficiency was introduced as miniTurbo [24]. In
the second strategy, by analyzing the sequence and
structural alignment of biotin ligases from different
species, Khavari and coworkers introduced mutations to
a B. subtilis biotin ligase to obtain a rationally designed

PL enzyme, BASU [25]. When used to investigate the
RNA-binding proteome (RaPID), BASU exhibited ki-
netics more than three orders of magnitude faster than
BioID [25]. However, in another study, the activity of
BASU was shown to be comparable with BioID/BioID2
in the cytoplasm [24].

Peroxidase-mediated PL offers even faster reaction ki-
netics by using free radical chemistry, as exemplified by
horseradish peroxidase (HRP). Peroxidases could act on
a wide variety of aromatic substrates, including luminol
ma membrane
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rimary cilia-targeted APEX2 identified several ciliary signaling molecules,
ome of endoplasmic reticulum (ER)–plasma membrane junctions and
of APEX-mediated PL in mitochondria. (d) Interaction network and agonist
pplications of BioID to analyze the protein–protein interaction networks of
ing bodies (e) and stress granules (f). (g) A comprehensive proteomic
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Figure 3
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Emerging trends of enzyme-mediated proximity labeling. (a–b) From membrane-bound organelles to open-space compartments. Peroxidase-based
PL was used to distinguish between the excitatory and inhibitory synaptic cleft proteome (a). Split enzymes were used to profile proteome at organelle
contact sites (b). (c) From static to dynamic view of local proteome. Time-resolved APEX PL reveals dynamics of GPCR interaction network. (d) From
protein-centric to peptide-centric analysis. Top: APEX PL with desthiobiotin-phenol whose reduced affinity to streptavidin (SA) facilitates recovery of
labeled peptides. Bottom: APEX PL with alkyne-phenol allows functionalization of alkynylated peptides with azide-conjugated biotin bearing a UV-
cleavable linker. Enriched peptides are released from streptavidin-coated beads via UV irradiation and identified by tandem mass spectrometry. Both
approaches improves detection of labeling sites (e–f) From protein-centered to DNA-centered proteomic profiling. Proteins associated with specific
genomic loci (e) or epigenetic marks (f) are labeled with dCas9-targeted APEX2 (e) or chromatin reader-fused BASU (f), respectively. (g) From protein-
centered to RNA-centered proteomic profiling. The RNA-binding proteome is captured by BASU targeted via lN peptide/BoxB interaction (h– i) From
proteomic to transcriptomic analysis. APEX PL is combined with protein-RNA crosslinking, via either formaldehyde or UV irradiation. Following purification
of biotinylated protein–RNA complex, RNA could be identified by high-throughput sequencing (h). RNA could also be directly labeled by APEX PL (i).
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for chemiluminescence [26], 3,30-diaminobenzidine for
electron microscopy contrast [27], and tyramine for
protein labeling and signal amplification [28]. Because
HRP is inactive when expressed in the cytosolic com-
partments [27], its applications have been restricted to
the cell surface [11,29]. APEX is a 28 kDa engineered
peroxidase that generates phenoxyl free radicals in living
cells to label proximal proteins (Figure 1b). The first

application of APEX in the mitochondrial matrix
required only 1-min labeling and captured 495 proteins
with >95% specificity, which helped reassign the proper
localization of heme metabolic enzymes, PPOX and
CPOX [30].

In 2015, through yeast display-based directed evolution,
Ting and coworkers identified a point mutation of APEX
that substantially improved its catalytic efficiency
(APEX2), likely by reducing its susceptibility to H2O2-
induced inhibition [31]. Interestingly, this mutation is

conserved in secreted peroxidases including HRP, thus
effectively turning APEX2 more HRP-like [31]. Over
the past 8 years, APEX/APEX2 has been applied to a
wide variety of subcellular compartments [15],
including the mitochondrial intermembrane space
(IMS) and outer membrane [32,33], the EReplasma
membrane contact [34], and primary cilia [35]
(Figure 2).
Toward higher spatial and temporal
resolution
Recently, the applications of PL has been extended from
membrane-bound organelles to open subcellular space
(Figure 3a). Initial efforts of PL in the IMS revealed
high cytosolic background, particularly those proteins
located near the mitochondrial outer membrane. To
improve the spatial specificity of PL, a ratiometric

quantitative proteomic workflow has been designed,
where the enzyme is targeted to two neighboring sub-
cellular compartments (e.g. IMS and cytosol) in two
parallel PL experiments, respectively. The ratio of bio-
tinylation extent (e.g. IMS/cytosol) is then used as a
“cytological ruler” to measure the relative proximity of
labeled proteins to either subcellular locations. Because
the effects of protein abundance, local chemical envi-
ronment, steric accessibility, etc., are cancelled out
during the ratio calculation, this ratiometric PL
approach has eliminated bias toward these factors, thus

effectively creating a proximity contour map.

A prominent example of PL in open subcellular space is
the study of synapse-specific proteome in cultured
neurons, where biochemical fractionation is incapable of
distinguishing excitatory synapses from inhibitory ones.
By targeting HRP to the plasma membrane (not specific
to synapses), excitatory and inhibitory synapses,
respectively, ratiometric PL successfully identified 199
proteins at excitatory synaptic clefts and 42 at inhibitory
Current Opinion in Chemical Biology 2021, 60:30–38
ones. This example demonstrates that peroxidase-
mediated PL is both applicable to primary culture and
capable of dealing with small amount of material [11].

The high spatial resolution of PL has enabled the
investigation of proteineprotein interaction networks in
LLPS-driven membrane-less organelles, such as SGs
and processing bodies. In 2018, through fusing APEX2

to an SG marker G3BP1, Yeo and coworkers discovered a
pre-existing SG protein interaction network in un-
stressed cells and further identified stress-specific and
cell typeespecific SG subproteomes [36]. Coincidently,
Gingras and coworkers applied BioID to uncover 7424
unique proximity interactions and 144 protein compo-
nents of cytosolic RNA granules [37].

To further improve the spatial specificity at organelle
interface, a split enzyme strategy has been developed
(Figure 3b). Enzymes such as BioID [38,39], TurboID

[40], and APEX2 [41] are split into two catalytically
inactive fragments which only recover biotinylation ca-
pabilities when they physically interact and reconstitute
at membraneemembrane contact sites. These split
versions of enzymes have enabled the specific profiling
of proteomes at the ER-mitochondrial contact (split-
TurboID) [40] and mitochondria-associated membrane
(Contact-ID) [38].

The fast reaction kinetics of APEX has enabled mapping
dynamic proteomic changes with high temporal resolu-

tion (Figure 3c). In 2017, APEX2 was fused to G-protein
coupled receptors (GPCRs) to investigate signaling
complex assembly upon ligand binding at minute-level
temporal resolution. While Kruse and coworkers
revealed the spatial and temporal clues to GPCR
signaling and internalization kinetics stimulated by
different ligands [42], Lobingier et al. captured the
location and function of previously unknown GPCR
network [43].
Beyond protein-centered analysis in cell
lines
Target identification in PL traditionally focuses on
protein-level quantitation (protein ID), where bio-
tinylated proteins are first enriched and then proteo-
lytically digested into peptides for tandem mass
spectrometry (MS/MS) analysis [30]. As the majority of

analyzed peptides are not tagged with biotin, this
workflow is inefficient at characterizing the sites of
biotin conjugation (site ID). Unlike protein ID, which is
prone to false positives arising from nonspecific protein
binding to affinity purification beads, site ID could
unambiguously assign protein targets because the
labeled peptides are directly detected by MS/MS. An
additional benefit of site ID is to provide information of
protein structural accessibility to enzymatic labeling,
information that can be used to derive membrane
www.sciencedirect.com
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protein topology or protein complex conformation [44].
However, the tight interaction between biotinylated
peptides and streptavidin beads has hindered site ID
[45].

One solution is to weaken the interaction. Rhee and
coworkers replaced the biotin moiety in the APEX
substrate with desthiobiotin that has reduced binding

affinity to streptavidin beads (Spot-ID) and applied this
technique to map the topological direction of 135
mitochondrial membrane proteins [46] (Figure 3d).
Similarly, the replacement of streptavidin with anti-
biotin antibody has resulted in more than 30-fold higher
ID rate for biotinylated peptides, as demonstrated by
Carr and coworkers [47]. Another solution is to substi-
tute the biotin moiety in the APEX substrate with a
clickable bioorthogonal functional handle, such as an
alkyne group. Labeled proteins could be conjugated
with an affinity tag containing a photocleavable linker,

which facilitates the identification of labeling sites by
MS/MS [48] (Figure 3d). When analyzing site ID data
sets, one should be mindful of potential false negatives,
as site ID reflects not only topology and complex
geometry but also the presence and accessibility of
particular target side-chains (i.e. lysine for BioID and
tyrosine for APEX).

In addition to studying proteineprotein interactions,
PL has been applied to map proteins associated with
specific genomic loci (chromatin-binding proteomes)

(Figure 3eef). Two methods (C-BERST [49] and
GLoPro [50]) combine dCas9-based genome targeting
and APEX2 labeling to discover proteomes bound to
telomeres, centrosomes, and MYC promoters. Besides,
ChromID has been introduced to obtain protein net-
works at DNA methylation and histone trimethylation
residues, through fusing engineered chromatin readers
to BASU [51]. The enzymes could be targeted to spe-
cific RNA molecules in a similar fashion to investigate
RNA-binding proteome (Figure 3g). Fusions with
bacteriophage MS2 (RNA-BioID) [52], lN peptide/
boxB RNA (RaPID with BioID or BASU) [25], or

CRISPR-Cas13 system [53] has allowed the identifica-
tion of novel RNA-protein interactions in b-actin mRNA
and Zika viral RNA.

More recently, two strategies have been used to extend
APEX2 labeling to profiling the subcellular organization
of RNA molecules (Figure 3hei). In the first strategy,
APEX2-mediated protein labeling was combined with
protein-RNA crosslinking methods, either with formal-
dehyde (APEX-RIP) [54] or via UV illumination (Prox-
imity-CLIP) [55]. While APEX-RIP performed well in

profiling transcriptome of membrane-enclosed organ-
elles, its spatial resolution is poorer in the cytoplasm.
Alternatively, direct RNA labeling by APEX2 was
achieved. APEX-seq developed by Ting and coworkers
could profile subcellular transcriptomes at nine
www.sciencedirect.com
landmarks and correlate them to genome architecture
and protein localization [56]. Ingolia and coworkers
applied APEX-seq and APEX-mediated protein labeling
to comprehensively understand the organization of
translation-initiation complexes and SGs [57]. Through
screening a panel of aromatic APEX substrates, the ef-
ficiency of APEX-seq was substantially enhanced by
replacing biotin-phenol with biotin-arylamine probes

[58].

Finally, proximity-dependent labeling has been applied
not only in the cell culture but also in animals. BioID has
been applied to discover inhibitory postsynaptic prote-
ome in neonatal mice [19]. Tissue- and subcellular
location-specific expression of APX in Caenorhabditis
elegans has identified over 3000 proteins in the nucleus
and the cytoplasm from four tissues [59]. To investigate
the molecular mechanism underlying brain wiring, the
cell surface proteome was profiled by HRP in the fly

brain [60].
Outlook for proximity labeling
Given the rapidly expanding PL toolkits, one may
wonder which method is better. The answer depends on

the specific experimental setup, including temporal
resolution, sensitivity to oxidative stress, probe delivery
issues, etc. The subminute temporal resolution of APEX
method remains unrivaled, and the requirement for
H2O2 delivery provides a means for temporal gating,
which is a prerequisite for studying dynamic processes
such as ligand-triggered cellular signaling. However, if
the temporal resolution is not a major concern, TurboID
would be a good choice as it avoids the harsh treatment
of H2O2. The dependence of BP probe delivery also
poses a challenge to APEX application in live tissue
[59,61]. In cases where both APEX and BioID are

suitable, it would be informative to compare results from
the two methods, which may complement each other as
these enzymes target different amino acids. For
example, in the mitochondrial matrix, 220 out of 495
proteins identified by APEX were also captured by
TurboID [24,30], while in the ER membrane, 313 pro-
teins were uncovered by both APEX (637 proteins) and
TurboID (808 proteins) methods [24,33].

As PL techniques continue to evolve, future applica-
tions would likely benefit from integrating with other

chemical biology techniques. For example, the combi-
nation of PL and photoactivation [62,63] could leverage
the high temporal resolution of both methods, which
would be particularly useful for studying subcellular
proteomic changes when a specific cellular signaling
transduction node is activated. We expect applications
to studying the dynamic process of signaling complex
assembly in the context of unfolded protein response,
oxidative and heat stress, etc. in the coming years.
Another possibility is to combine PL with protein/RNA
Current Opinion in Chemical Biology 2021, 60:30–38
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modification profiling. While the current analysis of PL
focuses heavily on protein/RNA abundance at specific
subcellular locations, future development may include
quantitation of their chemical modifications and turn-
over rates (e.g. protein post-translation modifications,
RNA epigenetic marks, etc.), which could further shed
light on the function of organelles and protein assem-
blies in their native context.

Finally, the concept of proximity labeling may inspire
the development of biocompatible photocatalysts. Like
enzymatic labeling, photocatalysis is also characterized
by multiple substrate turn-over and signal amplification.
Earlier this year, MacMillan and coworkers used anti-
body-conjugated iridium photocatalyst to generate
carbene from a diazirine probe in the vicinity of specific
receptor molecules. This method, called MicroMapping
(mMap), was applied to map proteineprotein in-
teractions on the cell surface [64]. Similarly, our group

has used genetically encoded photosensitizers and
singlet oxygen-mediated nucleobase oxidation to label
subcellular transcriptome in live cells with high spatial
resolution [65]. Because the delivery of light is readily
controllable and precise, both spatially and temporally,
we anticipate more developments and applications of
photocatalytic reactions in the future, as an important
supplement to the PL toolbox.
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