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ABSTRACT: RNA granules, including stress granules (SGs) and
processing bodies (PBs), are membraneless organelles that
orchestrate RNA localization, metabolism, and translational control
in response to cellular stress. This Perspective examines the RNA
landscape within SGs and PBs, highlighting recent insights into how
these compartments shape RNA fate. We review current method-
ologies for probing granule-associated RNAs, including high-
resolution imaging, transcriptomics, and sequencing-based ap-
proaches. In particular, we spotlight emerging photoactivated
proximity labeling techniques that offer unprecedented spatiotem-
poral resolution for mapping RNA interactions in living cells.
Looking ahead, we propose combining multiomic approaches to
better define the roles of RNAs within granules. Finally, we
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emphasize the importance of investigating RNA granules in neuronal contexts, where dysregulated RNA condensation is intimately
linked to neurodegenerative diseases. Together, these approaches promise to elucidate the molecular logic by which RNA granules
govern post-transcriptional gene regulation and cellular adaptation to stress.

B INTRODUCTION

RNA granules are dynamic, nonmembrane-bound structures
that play vital roles in RNA metabolism within eukaryotic cells.
They form through the selective aggregation of RNAs and
RNA-binding proteins into distinct types, such as stress
granules, processing bodies, transport granules, and germ
granules. By concentrating specific biomolecules, RNA
granules support critical processes including mRNA storage,
transport, localization, and translational control, enabling cells
to rapidly adapt to environmental and physiological
changes.”™" For instance, cytosolic germ granules contain
proteins and RNAs that are essential for germ cell develop-
ment. In response to developmental cues, these granules
dynamically regulate the localization, storage, modification,
and degradation of specific mRNAs, thereby facilitating germ
cells to progress through developmental checkpoints and
commit to their specialized fate.”®

The assembly of RNA granules is driven primarily by
liquid—liquid phase separation (LLPS), a process in which
multivalent interactions among proteins and RNAs give rise to
dynamic, condensed droplets. Many proteins involved in LLPS
feature intrinsically disordered regions (IDRs), prion-like
domains, and other aggregation-prone sequences that facilitate
transient, yet specific interactions.” In addition, RNA
contributes to LLPS through its unique physicochemical
properties: its exposed phosphate backbones and nucleobases
promote electrostatic interactions and base stacking, which are
essential for initiating and maintaining phase separation.”

© 2025 American Chemical Society

WACS Publications 3156

Moreover, specific sequence motifs, such as polypyrimidine or
polyguanosine tracts, can alter RNA secondary structures,
thereby modulating RNA—protein interaction strength and
influencing granule dynamics and stability. Together, these
RNA-specific characteristics underscore the critical role of
RNA in both the assembly and the structural organization of
granules.

Despite significant advances in our understanding of RNA
granules, key questions remain unanswered. In particular, the
mechanisms governing the selective localization of RNAs to
specific granules, the precise mRNA modifications occurring
within these structures, and the impact of an RNA’s translation
state on its granule localization are still under investigation.
Resolving these issues is essential for a comprehensive
understanding of how RNA granules coordinate mRNA
metabolism and mediate cellular stress responses. In the
following sections, we focus on two key granule types, stress
granules and processing bodies, discussing their RNA
composition, functional roles, current investigative methods,
outstanding questions, and future research directions.
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Figure 1. (A) Scheme of SG formation and recovery in mammalian cells. SGs are induced when cells are challenged with various stress, forming
membraneless compartments that often localize adjacent to PBs. These dynamic structures comprise proteins and RNAs engaged in multiple
interactions. Targeting to SGs is often positively correlated with RNA length, AU content, and m°A modifications. (B) Scheme of abnormal SG
formation in neurons under neurodegeneration disease. Mutations in SG-associated proteins can alter SG structure, leading to the formation of less
dynamic aggregates. Abnormal RNA, such as G4C2 repeats on C9orf72, might also induce the formation of abnormal SGs that are related to

neurodegeneration disease.

B RNA IN STRESS GRANULES

Stress granules (SGs), typically 100 nm to 1 ym in diameter,
form transiently in response to cellular stress’ (Figure 1A).
Under conditions such as oxidative stress, osmotic imbalance,
or viral infection, stalled protein translation causes preinitiation
complexes (PICs), RNA-binding proteins (RBPs), and specific
mRNAs to assemble into these liquid—liquid phase-separated
condensates.'"” SG nucleation begins when core scaffolding
RBPs with prion-like or IDRs, notably G3BP1 and TIAl,
aggregate along with stalled PICs.'” This multivalent assembly
is regulated by stress-responsive signaling pathways: for
example, amino acid deprivation inactivates mTOR, leading
to 4E-BP dephosphorylation and competitive binding to
elF4E, which disrupts the elF4E—elF4G complex and halts
translation initiation. Alternatively, oxidative stress (e.g.,
sodium arsenite) activates the integrated stress response,
phosphorylating elF2a at Ser51, impairing ternary complex
formation and blocking methionyl-tRNAM" delivery to
ribosomes.'' Pharmacologically, cycloheximide stabilizes poly-
somes and prevents SG formation, while puromycin-induced
polysome disassembly liberates mRNAs that drive SG
assembly."”
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SGs are thought to form a “core-shell” architecture. A stable
core, comprised of G3BP1, TIAl, and translationally repressed
mRNPs, nucleates SG assembly and recruits more dynamic
shell components.'” Core SG protein components with IDRs
and RNA-binding domains engage in multivalent homotypic
and heterotypic interactions, while RNA acts as a critical
modulator of phase separation. RNA sequencing of isolated SG
cores revealed a predominance of mRNAs, with subsequent
FISH imaging showing that some transcripts colocalize with
SGs at levels of 50—80%.'* These mRNAs exhibit a
significantly long CDS and UTR with reduced translational
activity. RNAs in SG can also exhibit stress- and cell-type-
dependent properties. Comparative transcriptomics under heat
stress versus eIF4A inhibition reveal stress-specific RNA
recruitment, highlighting context-dependent regulation of SG
composition for cellular adaptation."

SG RNAs also bear distinct epigenetic marks that influence
their phase behavior and localization. In vitro, N°-methyl-
adenosine (m°A) enhances RNA-protein phase separation.
Loss of the m®A writer METTL3 abolishes the selective
targeting of long mRNAs to SGs, directly linking m°A
modification to mRNA partitioning. Likewise, m'A-modified

https://doi.org/10.1021/acs.biochem.5c00265
Biochemistry 2025, 64, 3156—3164


https://pubs.acs.org/doi/10.1021/acs.biochem.5c00265?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00265?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00265?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00265?fig=fig1&ref=pdf
pubs.acs.org/biochemistry?ref=pdf
https://doi.org/10.1021/acs.biochem.5c00265?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Biochemistry

pubs.acs.org/biochemistry
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transcripts resume translation more rapidly after stress.””

Beyond methylation, SG RNAs are enriched in N*
acetylcytidine (ac*C), and knockout of the corresponding
acetyltransferase reduces the RNA content of SGs without
altering their assembly kinetics.'” Together, these findings
indicate that multiple RNA modifications cooperatively
promote phase separation and stress-adaptive mRNA parti-
tioning.

Bl RNA IN PROCESSING BODIES

Processing bodies (PBs) are abundant cytoplasmic ribonu-
cleoprotein (RNP) granules that, despite their prevalence, have
been less extensively characterized than stress granules (SGs)
in terms of structure, function, and molecular composition.
PBs were initially proposed as dedicated sites for mRNA decay,
as they were found to contain the 5'-3" exonuclease XRN1 and
the decapping enzymes DCP1 and DCP2 in yeast.'® These
granules were later reinterpreted as multifunctional storage
hubs for translationally repressed transcripts.'” Supporting this
view, PBs have been shown to enrich mRNAs with m°A
modifications in their coding sequences, marking them for
degradation.”® More recently, imaging assays demonstrated
that endogenous YTHDF2-induced and chemically induced
RNA decay occurs rapidly within PBs.”"">> However, RNA
sequencing of biochemically purified PBs revealed that many
mRNAs within PBs are translationally repressed but not
degraded,”** suggesting that PBs may also function as storage
sites for silenced transcripts.”>*® Thus, the precise role of PBs
remains unresolved.

In mammalian cells, PBs appear under fluorescence
microscopy as discrete foci approximately 0.1-0.5 pm in
diameter and number from a few up to tens per cell.”> Their
core protein machinery, including decapping activators EDC3,
DCP1, and the DEAD-box helicase DDX6, features IDRs or
low-complexity domains (LCDs) alongside canonical RNA-
binding motifs, a combination that promotes multivalent
interactions and LLPS. RNA is not merely cargo, but an
architectural element within PBs. For example, the yeast
RPS28B mRNA contains a long 3'UTR that binds the scaffold
protein EDC3, thereby nucleating PB assembly via recruiting
IDR-containing factors.”’

PB assembly is tightly coupled to the translational status.
Puromycin, which releases ribosomes from mRNAs, robustly
increases PB number by expanding the pool of nontranslating
mRNPs.”> Oxidative stress via sodium arsenite similarly
enlarges and multiplies PBs, often positioning them adjacent
to newly formed SGs.'” In contrast, prolonged endoplasmic
reticalum (ER) stress induced by tunicamycin has been
reported to impair PB formation in certain cellular contexts,
reducing their abundance.” Interestingly, PBs and SGs engage
in continuous molecular exchange under stress. DEAD-box
helicases such as DDX6, present in both granules, use ATP
hydrolysis to modulate RNA entry and exit, controlling granule
composition and dynamics.”’ Single-molecule imaging shows
individual mRNAs associating transiently with SGs and PBs
and shuttling bidirectionally on time scales of seconds to
minutes.””

High-throughput sequencing of purified PBs demonstrates
that they harbor a diverse RNA cargo, including miRNAs, long
noncoding RNAs, and predominantly mRNAs.”" In mamma-
lian cells at steady state, PB-enriched mRNAs are strongly AU-
rich and tend to encode low-abundance regulatory proteins,
suggesting selective sequestration based on nucleotide
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composition and functional category.””** In stem cells,
DDX6-dependent PBs store mRNAs encoding chromatin
remodelers, transcription factors, and growth regulators.
Upon PB disassembly triggered by loss of DDX6 activity,
these mRNAs reenter the translational pool, enabling rapid
shifts in cell fate and differentiation capacity.”> The m°A
modification further tunes PB targeting. Transcripts bearing
mC®A marks recruit YTHDF2, which drives their partitionin
into PBs and enforcement of a translation-repressed state.”*>"
While our understanding of PB architecture, composition, and
dynamics has expanded considerably, many mechanistic
details, particularly how specific RNAs and proteins are
selectively partitioned and how PBs integrate into broader
post-transcriptional regulatory networks, remain open ques-
tions. Recent studies have shown that SG-specific RNAs
exhibit higher levels and a greater density of m°A modification
compared to PB-specific RNAs under sodium arsenite
treatment. Given that m®A binding proteins such as
YTHDF1/2/3 regulate the partitioning of mC®A RNAs, their
strong association with other SG components likely drives the
localization of highly methylated RNAs to SGs. 7

B RNA GRANULES IN THE NERVOUS SYSTEM

In highly polarized neurons, RNA granules orchestrate
maturation, homeostasis, and, as increasingly recognized,
pathological processes.”” These membraneless assemblies
remodel dynamically over time scales from seconds to minutes
in response to acute stimuli, up to weeks or months during
development and aging.”” For instance, the Drosophila long
noncoding RNA mimi scaffolds neuronal granules by binding
ELAV-like proteins and recruiting Staufen (Stau), FNE, and
RBPY, thereby regulating RNA storage and distribution during
adulthood. Loss of mimi granules in aging flies impairs
locomotor behavior and reduces survival, underscoring their
role in maintaining neuronal maturity.38 During murine
hippocampal neuron maturation, DDX6-positive granules
decrease in size but increase in number,>” whereas in aging
Drosophila brains, the DDX6 ortholog Me31B condenses into
fewer, larger, yet still dynamic foci.*

Transport granules are neuron-specific RNA condensates
responsible for delivering RNAs from the soma to the distal
neurites. By positioning RNAs near synapses, these granules
help neurons coordinate local translation in response to rapid
environmental stimuli.*' Studies have shown that loss of the
survival motor neuron (SMN) protein disrupts transport
granule assembly, impairing the trafficking and function of f-
actin mRNA.** Under physiological conditions, ALS/FTD-
associated proteins such as TDP-43 and FUS are components
of transport granules. However, disease-linked mutations
promote their aggregation, which interferes with granule
binding to microtubules and impairs their motility, ultimately
leading to deficiencies in neuronal RNA transport.”**

Functional RNA granules also operate in non-neuronal cells
of the nervous system. In oligodendrocytes, MBP mRNA is
packaged into transport granules containing hnRNP A2, which
shuttle transcripts along microtubules to sites of myelin
assembly and repress translation until arrival.***® These
granules harbor core translation machinery components,
indicating that they serve both as transport vehicles and local
translation hubs. Although studies have cataloged protein
constituents extensively, the full complement of RNAs within
these granules and how they regulate myelination remain to be

defined.

https://doi.org/10.1021/acs.biochem.5c00265
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Multiple lines of evidence implicate neuron-specific SGs in
the pathogenesis of neurodegenerative disorders such as
amyotrophic lateral sclerosis (ALS), Alzheimer’s disease
(AD), and frontotemporal dementia (FTD).*’~*" Mutations
in SG-resident RBPs, including TDP-43, TIAl, and FUS, are
common in ALS/FTD patients’” > and often map to low-
complexity domains or RNA-binding regions, disrupting
normal RNA interactions and phase-separation behavior. As
a result, aberrant, SG-like inclusions form under basal
conditions and become resistant to clearance, while altered
RNA interactions further stabilize these aggregates and impart
neurotoxicity.53

RNA itself can exacerbate pathological aggregation (Figure
1B). In ALS/FTD, expanded G4C2 repeats in C9orf72
transcripts drive SG assembly and noncanonical translation
under nonstress conditions.”* These repeats can also produce
dipeptide repeat proteins that modify SG protein dynamics and
promote formation of G3BP1l-containing granules with
diminished fluidity.”> Although most transcriptomic profiling
has relied on immortalized cell lines, the RNA composition
and functional consequences of SG formation in neurons have
remained poorly defined. Addressing this gap will be critical for
uncovering neuron-specific mechanisms of SG regulation and
their roles in neurodegenerative disease.

B DECIPHERING RNA COMPONENT AND
INTERACTIONS WITHIN RNA GRANULES

Numerous studies have examined RNA composition and
function in RNA granules using two main approaches: (1)
high-resolution optical microscopy and (2) high-throughput
sequencing of granule-associated RNAs.

Imaging-Based Methods. High-resolution microscopy
visualizes RNA localization but typically captures only static
snapshots (Figure 2). In fixed cells, single-molecule FISH
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Figure 2. Scheme of imaging-based techniques for studying RNAs in
SGs and PBs.

MCP-dye

(smFISH) is widely used.”® For example, Parker et al."* applied
smFISH to stress granules (SGs) in human osteosarcoma cells,
showing that mRNA distribution within SGs changes with
different stress stimuli.”” They later combined smFISH with
super-resolution imaging to reveal that translationally repressed
RNAs inside SGs are compact, whereas actively translating
mRNAs are more extended, likely because of ribosome
binding, implying that the translation state affects SG
localization. However, smFISH cannot track the RNA
dynamics over time.
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In live cells, RNA tracking relies on engineered reporters
(Figure 2). In the classic MS2/MCP approach,”® RNAs
bearing MS2 hairpins recruit fluorescent coat protein MCP,
enabling real-time observation of RNA exchange between SGs
and PBs and revealing functional RNA localization within
PBs.3%%? Combining MS2/MCP with PP7/PCP reporters
demonstrated that PBs are not major sites of RNA decay,
challenging prior assumptions.””*"*” A SunTag-MS2 reporter
fused to the ATF4 5'UTR further showed that mRNAs can
undergo initiation, elongation, and termination inside SGs,
overturning the view that SG-localized RNAs are translation-
ally silent.”” In addition to the MS2/MCP system, the more
recently developed Cas-based RNA imaging method®"®” and
fluorescent RNA technique®®> have also greatly facilitated our
understanding of mRNA (e.g, ACTB) trafficking into SGs
under stress. Metabolic incorporation of modified nucleosides
can also enable RNA tracing in living cells.®> For instance,
overexpression of uridine-cytidine kinase enhances the
incorporation of cytidine analogues into RNA, enabling
researchers to monitor global RNA localization, synthesis,
and turnover. This approach has shown that certain RNAs
form cytoplasmic foci that colocalize with DDX6 but not with
G3BP1 or the P-body marker DCP1A, suggesting that under
stimulation these RNAs may aggregate into distinct granule
types.64

Overall, imaging-based techniques provide high-resolution
information about RNA localization, dynamic tracking, and
turnover within granules, leading to significant breakthroughs
in understanding granule function. However, these methods
are limited by low throughput and the need for prior
knowledge of target RNAs. Consequently, sequencing-based
techniques are essential to complement imaging approaches, as
they offer more comprehensive, global insights into the RNA
composition in granules.

Sequencing-Based Methods. Sequencing-based ap-
proaches begin by isolating granule-associated RNAs, convert-
ing them into c¢cDNA libraries and then applying high-
throughput sequencing (Figure 3). These workflows yield an
unbiased, global portrait of the subcellular transcriptome,
uncovering novel sequence features, transcript-length biases,
and localization signals that illuminate granule assembly and
function. Three principal strategies have emerged: (1)
biochemical purification, (2) base-editing tagging, and (3)
proximity labeling.

During biochemical fractionation, RNA granules can be
enriched by ultracentrifugation, immunoprecigitation,13"14 or
fluorescence-activated particle sorting (FAPS).”* For example,
Parker and coworkers used ultracentrifugation to isolate
arsenite-induced SG cores from U-2 OS cells,' finding that
these cores harbor mRINAs with longer sequences but reduced
translation efficiency.'* Similarly, Weil’s group applied FAPS to
purify GFP-LSM14A-tagged PBs from HEK293T cells, and
sequencing analysis revealed that these mRNAs were transla-
tionally repressed yet largely stable.”> While powerful, these
enrichment methods may lose weakly bound components and
risk contamination.

Base-editing methods label RNAs in situ, eliminating the
affinity steps. TRIBE (targets of RNA-binding proteins
identified by editing) fuses the ADAR enzyme to an RNA-
binding protein, converting nearby adenosines to inosines,
which appear as A-to-G mutations upon sequencing.éb In
Drosophila S2 cells, FMR1-ADAR revealed SG-associated
transcripts by comparing editing before and after stress.’’
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Figure 3. Scheme of sequencing-based techniques for studying RNAs in SGs and PBs.

TRIBE-ID further couples ADAR editing with rapamycin-
induced dimerization of G3BP1-FRB and FKBP-ADAR,
conﬁrmmg that SG RNAs are long, poorly translated, and
short-lived.”” By avoiding affinity purification, these ap-
proaches minimize input requirements and can operate at
single-cell resolution. However, data analysis could be
complicated by the inherent biases of editing enzymes.

Proximity labeling covalently tags RNAs near a protein of
interest in living cells, offering high spatiotemporal precision
(Figure 3). In APEX-seq, the engineered peroxidase
APEX2°%% generates biotin radicals from biotin-phenol in
the presence of H,0,, labeling adjacent RNAs.' > Targeting
APEX2 to SGs via elF4Al in HEK293T cells showed that
longer mRNAs accumulate more slowly during heat shock.'”
Although APEX-based approaches provide direct molecular
tagging, their reliance on H,0, can induce cellular toxicity that
perturbs SG assembly.”””" In addition, the labeling efficiency
of APEX-seq is limited by the low reactivity of APEX-
generated phenoxyl radicals toward nucleobases. To address
this, several studies have employed metabolic incorporation
strategies or optimized probe design to enhance radical
reelctivit)r.72’7

Photoactivated proximity labeling circumvents peroxide
toxicity by generating reactive species through the light
activation of photosensitizers. Because the lifetime and
diffusion radius of these species are limited, often to the
nanometer scale, this strategy achieves high spatial resolution.
Using visible light also grants finer temporal control than does
APEX-seq. Broadly, photoactivated methods fall into two
categories: small-molecule photosensitizer-based and genet-
ically encoded protein-based labeling. Organic dyes such as
dibromofluorescein (DBF) can be tethered to protein tags
(e.g, HaloTag) or targeting moieties. Under green light, DBF
produces singlet oxygen that oxidizes nearby RNA.”* However,
these dyes often require long incubations and can yield a
higher background from nonspecific adsorption.

Genetically encoded photocatalytic RNA labeling employs
an engineered protein photocatalyst, such as miniSOG (mini
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singlet oxygen generator), that can be targeted to subcellular
locations via protein fusion.” Upon blue light illumination,
miniSOG generates singlet oxygen that oxidizes guanines on
nearby RNAs, which then react with amine-containing probes,
allowing subsequent affinity purification and sequencing
analysis (ie., chromophore -assisted proximity labeling and
sequencing, CAP-seq).”® Owning to the short lifetime (<60
us) and limited diffusion radius (~70 nm) of singlet oxygen,””
CAP-seq achieves high spatiotemporal resolution. When
miniSOG is targeted to SGs via fusion with G3BP1, CAP-
seq analysis allows kinetically resolved mapping of SG
transcriptomes during stress induction and disassembly,
revealing the presence of stress-imprinted nanoscale SG
cores that feature AU-rich and translationally silenced RNAs.”®

To summarize, over the past decade, high-resolution
imaging and high-throughput sequencing have converged to
illuminate the composition, dynamics, and function of RNA
granules. Imaging methods (smFISH, MS2/MCP, SunTag,
Cas-based reporters) deliver spatially precise, dynamic snap-
shots of individual transcripts within SGs and PBs, revealing
how translation state, localization, and turnover change under
stress, but they remain limited by throughput and the need to
predefine RNA targets. Sequencing-based approaches, includ-
ing biochemical enrichment, base-editing tagging (e.g.,
TRIBE), and proximity labeling (e.g, APEX-seq, CAP-seq),
provide an unbiased, global census of granule-associated RNAs,
uncovering length biases, localization signals, and kinetic
recruitment profiles, yet each carries trade-offs in purity,
enzyme bias, or cellular toxicity. Together, these methods
synergize to offer both molecular detail and a transcriptome-
wide scope, yielding a more complete picture of how RNA
granules assemble, function, and disassemble.

B FUTURE PERSPECTIVES

Transcriptome-wide analyses are transforming our view of
RNA granules by revealing the full complement of RNAs they
harbor, how those RNAs behave, and how localization
influences translation. Because RNAs both carry genetic
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Table 1. Future Directions for Studying RNA Granules

Future Directions

Transcriptome-wide analysis for RNA targeting
mechanism

Defining principles on RNA-RBP colocalization Multiomic profiling

RNA granules analysis in primary cells, tissues, in vivo,

and clinical samples manipulation

Precise control of RNA condensate properties

Manipulating critical domains or sites for RNA
granules disassembly

Manipulating RNA granules dynamics with light

Profiling translatome
Profiling RNA modifications

Profiling RNA granules without genetic

Perturbing RNA granule assembly with drugs

Aims Techniques in Requirement

Spatiotemporally resolved ribosome profiling
Spatially resolved m®A-seq
Proximity labeling of both proteins and RNAs

Immuno-proximity labeling techniques

Chemicals targeting specific RNA condensates

Al-guided identification of RNA structures and
protein domains

Photoswitchable or photocleavable peptides for
protein control

information and regulate gene expression, mapping their
spatial distribution alongside their translational activity is
essential. Although SGs were long thought to be translationally
silent, recent work shows that a subset of SG-resident mRNAs
continues to be translated.®” Prior imaging-based studies,
however, suffered from low throughput and reporter bias
toward specific motifs. Unbiased, global measurements now
demonstrate that, during SG disassembly, SG-enriched tran-
scripts preferentially reengage ribosomes, whereas mRNAs
stalled in translation remain outside granules.”” This dynamic
interplay between localization and translation calls for
integrated assays, combining ribosome profiling with high-
resolution spatial transcriptomics across SG assembly and
disassembly to reveal how granule targeting modulates
translational control. The role of RNA modifications, such as
m®A, in regulating molecular partitioning between the
cytoplasm and various RNA condensates remains poorly
understood. To uncover the underlying mechanisms, effective
labeling tools are needed for profiling RNA modifications and
associated RNA-binding proteins (Table 1).

While SG assembly is driven by multivalent RNA—RNA and
RNA-—protein interactions, the principles that determine which
RNAs and RBPs colocalize remain poorly defined. To close
this knowledge gap, future work should integrate tran-
scriptome-wide and proteome-wide data sets collected under
diverse stress paradigms, thereby revealing compositional rules
across conditions. In particular, photoactivated proximity
labeling methods, which combine temporal precision with
subcellular resolution, are ideally suited to map RNA-protein
contacts in living cells. For example, genetically encoded
miniSOG can be used under blue-light illumination to trigger
reactive oxygen species that label both nearby RNAs (e.g., via
CAP—seq) and proteins (e.g., via RinID,so PDPL, ' or
LITag),82 enabling multiomic profiling in the same cell line.

Neurons rely on diverse RNA granules, including transport
RNPs, SGs, and PBs, to regulate local mRNA translation and
synaptic plasticity.”” However, the molecular composition and
functional roles of neuronal RNA granules in primary neurons,
tissues, and living animals remain incompletely characterized.
Aberrant dynamics of these granules, often manifesting as
persistent or misassembled condensates, are hallmarks of
multiple neurodegenerative diseases.” For example, the ALS-
linked FUS RS521C mutation disrupts SG assembly, misloc-
alizes FUS to the cytoplasm in cortical neurons, and drives
apoptosis in vivo.” Similarly, chronic cellular stress in
Alzheimer’s models induces Tau hyperphosphorylation,
which recruits SG proteins and RNAs into pathological
aggregates.”> Employing spatially resolved RNA labeling
alongside proximity proteomics in neuronal disease models
will reveal how granule composition shifts during pathology,
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link these changes to dysfunction, and uncover novel
intervention targets. For clinically relevant samples, there is
an urgent need for nongenetically encoded labeling techniques
with high efficiency (Table 1).

Dissecting the molecular roles of specific RNAs or proteins
within RNA condensates remains a major challenge. Targeted
chemical approaches that disrupt specific protein domains or
RNA secondary structures, which often promote granule
disassembly, offer a more precise alternative to broad-spectrum
LLPS-disrupting agents, such as 1,6-hexanediol (Table 1).
Advances in Al and structural biology have further enabled the
rational design of domain truncations or site-specific mutations
that reduce the phase separation propensity of biomolecules,
facilitating more targeted functional analyses. In parallel, light-
inducible tools such as optoDroplets, optoGranules, and
SPARK-ON allow for controlled granule assembly using
light.** "% Complementary technologies for light-induced
disassembly hold strong potential for revealing the molecular
mechanisms that govern the cellular regulation of RNA
condensates (Table 1).
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